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Abstract. The problem of multiuser detection in wireless communications systems adopts, in flat-fading channels,
a blind source separation (BSS) formulation of instantaneous linear mixtures. This contribution addresses the
closed-form solutions to BSS in the complex-mixture scenario. The algebraic devices which span a unifying
framework for the complex BSS closed-form estimators are developed. With the aid of these tools, results orig-
inally encountered in the real-mixture case are extended to the complex case, thus highlighting the remarkable
parallelism existing between the real and complex problems in the context of their analytic solutions. Computer
simulations illustrate the theoretical results and compare the proposed methods to other BSS procedures.
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1. Introduction

1.1. PROBLEM STATEMENT

CDMA’s many attractive features (“soft capacity”, “soft handover”, inherently dynamic chan-
nel sharing, etc.) have transformed it into the preferred multiple access technique for third
generation wireless personal communications [20]. Since the quality of CDMA systems de-
grades with the interference caused by users operating in the same cell, active suppression
of multiuser interference (MUI) leads to considerable performance gains. Multiuser detection
(MUD) [26, 27] techniques take advantage of the particular structure of MUI in order to
extract the signal(s) of interest free from interference. This process implicitly involves the
recovery of the users’ transmitted signals that are mixed at the receiving antenna. In flat-fading
environments [21], the signals observed at a sensor array output y = [y1, . . . , yp]T ∈ C

p

can be considered as unknown instantaneous mixtures of the transmitted data signals x =
[x1, . . . , xq ]T ∈ C

q :

y = Mx . (1)

The unknown mixing matrix M ∈ C
p×q is determined by the spreading waveforms, propaga-

tion conditions, source-sensor positions, etc. Hence, MUD reduces to the estimation of users’
data x from the observations y, a problem which corresponds the blind source separation
(BSS) of instantaneous linear mixtrues [31]. A myriad of other applications, in areas as diverse
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as biomedical signal processing [15, 16, 22], seismic exploration [14, 24], radar and sonar,
speech processing [25], etc., can also be modelled from the perspective of BSS. Due to this
wide range of applications, the BSS problem has aroused great research interest over the last
decade.

Only two assumptions usually suffice to achieve the separation, namely, that the source
signals be statistically independent and the matrix M be full column rank. Even counting on
these fundamental hypotheses, the solution to the BSS problem suffers from inherent indeter-
minacies related to the order and the scale of the recovered sources. Both are unimportant in
most practical situations. As a consequence, it can be assumed without loss of generality that
the sources are unit-variance.

The convenience of tackling the problem in two steps has been endorsed in a great number
of works [4, 6–10, 12–14, 19, 30, 31]. The first step, known as pre-whitening, involves second-
order statistics (SOS) and yields a set of uncorrelated normalized signals, so-called whitened
observations. The second step accomplishes the source separation and mixing matrix iden-
tification by means of the higher-order statistics (HOS) of the data. The justification for the
first SOS-based step is twofold: (a) since SOS are generally estimated with higher accuracy
than HOS, it seems sensible to benefit from the former before resorting to the latter, and (b)
after pre-whitening, the dimensionality of the problem is reduced. Effectively, the whitened
observations z are related to the true sources through a unitary transformation Q ∈ C

q×q :

z = Qx , (2)

from where it becomes apparent that fewer parameters remain to be estimated relative to the
initial model (1).

1.2. CLOSED-FORM SOLUTIONS

Several different approaches exist to cope with the BSS problem [4, 8, 31], but we are pri-
marily concerned with the closed-form or analytical solutions which yield direct estimators
for the mixing-structure elements. In the two-source two-sensor scenario, direct solutions are
found for model (1) without the need for a pre-whitening stage [5, 17]. However, this is at
the expense of constraining the mixing matrix structure, resulting in the loss of the uniform
performance property [3, Section III-E]. The desirable uniform performance feature means
that the separation quality depends only on the source distribution, but not on the particular
mixing structure [2, 3].

For this reason, our focus is rather on the direct estimation of matrix Q after pre-whitening,
where no such constraints on the mixing structure are made. In [6] the first analytical expres-
sion (Comon’s formula, CF) was proposed for the real-mixture case, based on the 4th-order
cumulants. The extension of this idea to the complex-signal environment (complex CF, CCF)
was carried out in [7], [9] and [13]. Also for the real-mixture scenario, the maximum-
likelihood (ML) approach was adopted in [12], and with the help of Gram–Charlier expansion
of the source probability density function (pdf), another closed-form estimator (approximate
ML, AML) was obtained for symmetric sources with identical distribution and positive kurto-
sis. Those restrictions were spared with the estimator developed in [30] (extended ML, EML).
Another of such expressions (sum of output kurtosis, SOK) was found in [10] as the closed-
form solution to the maximimization of a contrast function proposed in [19]. The connection
among the above estimators for the real case was accomplished in [33]. The relationship
between the CF, the AML and the EML was unveiled and the performance of the CF analyzed.
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A family of closed-form estimators based on the nth-order cumulants was developed, of which
the EML was found to be a particular case (at order n = 4). The family was associated with
the respective cost function optimization criteria, which led to the link between the EML and
the SOK solutions. Also, a novel 4th-order estimator (alternative EML, AEML) was proposed,
in conjunction with an empirically-derived decision rule, in order to overcome a deterioration
in performance of the other 4th-order estimators for null source kurtosis sum (sks).

1.3. OBJECTIVES AND ORGANIZATION

In MUD, as well as in other communications problems, digital modulations and channel ef-
fects are conveniently described via complex-valued (phasor) representations, which result in
a BSS model of complex mixtures. Solving the complex-mixture problem is also of interest in
other important applications such as seismic sounding [14, 24]. The purpose of this paper is to
extend to the complex case some of the results unfolded in [33] for the real-mixture scenario.
In particular, we want to lay emphasis on the existing analogy between the direct solutions to
the real and complex problems. The definition of a special set of numbers in accordance with
the particular structure of matrix Q plays a crucial role in achieving these objectives.

The contents are divided in the following sections. In the first place, Section 2 deals with
the peculiarities of the problem in the complex case, and sets the statistical nomenclature that
will be used for complex variables. Section 3 defines a new number class – so called bicomplex
numbers – in compliance with the structure and properties of the unitary transformation to be
identified. By using this new tool, a family of closed-form estimators based on the HOS (the
higher-order cumulants) of the whitened signals is disclosed in Section 4. This family is totally
analogous to the one found for the real case in [33]. At fourth order, the general expression
reduces to the complex extension of the EML estimator of [30]. Similarly as occurred for its
real counterpart, this 4th-order estimator suffers a performance degradation when the sks is
near zero. To surmount this limitation, a hybrid estimation procedure is proposed, featuring an
alternative estimator also based on 4th-order cumulants. The simulations reported in Section 6
illustrate these results and compare the methods studied to other BSS techniques. Conclusions
are left for Section 7. Table 1 lists all the acronyms employed throughout the paper.

2. Complex Mixtures

2.1. PROBLEM PARATERIZATION AND EQUIVALENCE CLASS OF VALID SOLUTIONS

In the complex case, the 2 × 2 unitary transformation Q becomes a unitary matrix, with the
generic shape:

Q =
[
a −b∗
b a∗

]
, (3)

symbol ∗ representing complex conjugation. Up to (irrelevant, due to the source scaling inde-
terminacy) pre-multiplication by a unit-norm diagonal matrix, the above matrix reduces to a
complex Givens rotation, which exhibits the general form:

Q = Q(θ, α) , (4)

with

Q(·, ·) : R × R 
→ C
2×2, Q(θ, α) =

[
cos θ −e−jα sin θ

ejα sin θ cos θ

]
. (5)
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Table 1. List of acronyms.

Acronym Definition

AEML alternative EML

AML approximate maximum likelihood

BSS blind source separation

CAEML complex AEML

CCF complex CF

CDMA code division multiple access

CEML complex EML

CF Comon’s formula

combCCF combined CCF

combCEML combined CEML

EML extended maximum likelihood

HOS higher-order statistics

ISR interference-to-signal ratio

JADE joint approximate diagonalization of eigenmatrices

MC Monte Carlo

ML maximum likelihood

MUD multiuser detection

MUI multiuser interference

pdf probability density function

PRBS pseudorandom binary sequence

QAM quadrature amplitude modulation

skd source kurtosis difference

sks source kurtosis sum

SNR signal-to-noise ratio

SOK sum of output kurtosis

SOS second-order statistics

SVD singular value decomposition

Therefore, two parameters, angle θ and phase α, need to be estimated in order to achieve the
identification of the relevant matrix, and hence the source extraction. If θ̂ and α̂ represent
estimates of θ and α, respectively, then the source separation is attained through

x̂ = Q̂
H
z = Q̂

H
Qx, Q̂ = Q(θ̂ , α̂) . (6)

The actual values of (θ, α) are not the only solutions to provide a valid source extraction. Due
to the indeterminacies commented in Section 1.1, any solution of the form

G � Q̂
H
Q = PD , (7)
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with P a permutation and D a regular diagonal matrix is considered as acceptable, since it
preserves the source waveforms. Accordingly, the following set of solutions are equivalent in
the waveform-preserving sense to (θ, α), i.e., (θ̂ , α̂) ≡ (θ, α):

(θ̂ , α̂) =
(
θ + mπ

2
, α + 2πn

)
, and (8a)

(θ̂ , α̂) =
(
−θ + mπ

2
, α + (2n + 1)π

)
, n,m ∈ N . (8b)

Hence, we call [(θ, α)] � {(θ̂, α̂) ∈ R
2 | (θ̂ , α̂) ≡ (θ, α)} the equivalence class of valid

solutions of our problem.

2.2. COMPLEX-VARIATE STATISTICS

The methods studied in this paper rely on the higher-order cumulants of the data. There are
different possible natural ways to define the cumulants for complex variables [1]. For our
purposes, however, it is convenient to choose:

Cumz
i1i2i3...

� Cum[z∗
i1
, zi2, z

∗
i3
, . . .] . (9)

The same pairwise conventions as those defined in [33] hold (Kendall’s convention [23]):

κzn−r,r � Cumz
1...1︸︷︷︸
n−r

2...2︸︷︷︸
r

. (10)

For unit-variance zero-mean uncorrelated components, the expressions for the 4th-order
cumulants are:

κz40 = E[|z1|4] − |E[z2
1]|2 − 2, κz31 = E[z∗

1|z1|2z2]
κz22 = E[|z1|2|z2|2] − 1, κz13 = E[z∗

1|z2|2z2]
κz04 = E[|z2|4] − |E[z2

2]|2 − 2 ,

(11)

where E[·] denotes the mathematical expectation. Note that certain cumulants may take com-
plex values (such as κz31 and κz13 above). It is precisely from these complex-valued cumulants
that the complex phase α can be estimated.

Owing to the linear relationship between the whitened observations and the source signals
represented by Equations (2), (4) and (5), and the multilinearity property of cumulants [18,
Section 2.4], we have:

κz40 = cos4 θκx40 + sin4 θκx04

κz31 = cos3 θ sin θejακx40 − sin3 θ cos θejακx04

κz22 = cos2 θ sin2 θ(κx40 + κx04)

κz13 = cos θ sin3 θejακx40 − sin θ cos3 θejακx04

κz04 = sin4 θκx40 + cos4 θκx04 .

(12)

3. Bicomplex Numbers

The use of complex numbers facilitates the closed-form identification of the orthogonal mix-
ing matrix in the real case [30, 33]. Since we are now dealing with complex mixtures, it seems
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natural to seek certain type of extension of the complex numbers. We carry out such extension
as follows.

DEFINITION 1 (bicomplex number). A bicomplex number x̄ ∈ B is an expression of the
form:

x̄ = a + jb, a, b ∈ C, j 2 = −1 . (13)

Although symbol j has the same numeric value as the usual imaginary unit j , it must be
understood as “orthogonal” to or in a “different space” from that of j , so that they actually
repesent distinct algebraic elements.

DEFINITION 2 (breal and bimaginary part). Given x̄ = a + jb ∈ B,Re(x̄) = a ∈ C is the
bicomplex-real (breal) part of x̄, and Im(x̄) = b ∈ C its bicomplex-imaginary (bimaginary)
part.

This terminology prevents confusion with the commonplace real [Re(·)] and imaginary
[Im(·)] parts of complex numbers, which are always real valued. Accordingly, j is named
bimaginary unit. Due to the nature of the matrix to be identified, our attention is restricted to
the subset:

DEFINITION 3 (unitary bicomplex number). Bu = {x̄ ∈ B : |a|2 + |b|2 = 1} is the set of
unitary bicomplex numbers.

It is straightforward to establish an isomorphism between the set of bicomplex numbers
and a particular set of matrices related to our problem. Let us first define this matrix set.

DEFINITION 4. U is the set of unitary 2×2 matrices: U = {U ∈ C
2×2 : UUH = UHU = I }.

The set U under ordinary matrix multiplication forms a non-Abelian group. In particular,
U is a subgroup of SL(2, C), the so-called special linear group of 2 × 2 matrices over C [11].
Any matrix U ∈ U can be written in general form as:

U =
[
a −b∗
b a∗

]
, a, b ∈ C, |a|2 + |b|2 = 1 . (14)

The product of two unitary matrices is given by:

U 1U 2 =
[
a1a2 − b∗

1b2 −a1b
∗
2 − b∗

1a
∗
2

b1a2 + a∗
1b2 −b1b

∗
2 + a∗

1a
∗
2

]
. (15)

Now, we can define the product of two bicomplex numbers x̄1 and x̄2 in compliance with the
product of U-matrices by regarding the first column of the previous expression, so that:

x̄1x̄2 � [Re(x̄1)Re(x̄2) − Im∗(x̄1)Im(x̄2)] + j [Im(x̄1)Re(x̄2) + Re∗(x̄1)Im(x̄2)] . (16)

With this product operation: j 2 = −1, in agreement with Definition 1. Also, if both the
breal and bimaginary parts of the bicomplex operands are real, such product reduces (chang-
ing j for j ) to the usual complex-number multiplication. Hence, Equation (16) is a natural
generalization of the complex product. By virtue of these conventions, the mapping

ℵ : U 
→ Bu , (17)
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with

ℵ(U) = u11 + ju21 = a + jb, U ∈ U , (18)

represents an isomorphism between U under normal matrix multiplication and Bu under the
bicomplex-number product as defined in (16). Effectively, ℵ(·) is one-to-one, onto and oper-
ation preserving, conditions that must be fulfilled by any isomorphism [11]. From the former
two conditions, any x̄ = a + jb ∈ Bu can be uniquely associated to the first column of one
and only one matrix U = [u1,u2] = ℵ−1(x̄) ∈ U,u1 = [a, b]T. The latter condition is due to
(16), which guarantees ℵ(U 1U 2) = ℵ(U 1)ℵ(U 2). Therefore, the related sets are isomorphic:
U ∼ Bu. Having established this connection, and owing to the properties of isomorphisms,
the following definitions naturally follow, ∀x̄ ∈ B:

DEFINITION 5 (conjugation). x̄∗ = Re(x̄)∗ − jIm(x̄).

This is because the first column of UH is [a∗,−b]T.

DEFINITION 6 (modulus). |x̄|2 = x̄x̄∗ = x̄∗x̄ = |Re(x̄)|2 + |Im(x̄)|2.

Effectively, the first column of UUH and UHU is given by [|a|2+|b|2, 0]T. As an immediate
consequence:

DEFINITION 7 (inverse). x̄−1 = x̄∗/|x̄|2.

For instance, j−1 = −j , just like its complex twin j .
If the unitary transformation is parameterized like in (4)–(5), then the associated unitary

bicomplex number becomes an important particular case.

DEFINITION 8 (bicomplex exponential). Expression

ejθα � cos θ + jejα sin θ, θ, α ∈ R , (19)

is called bicomplex exponential, by analogy with its familiar complex counterpart.

The following properties of the bicomplex exponential are easily proven, ∀n ∈ N,∀θ, θ1,
θ2, α ∈ R:

(i) ejθ1
α ejθ2

α = ejθ2
α ejθ1

α = ej (θ1+θ2)
α , and hence (ejθα )n = ejnθα (20a)

(ii) (ejθα )−1 = (ejθα )∗ = e−jθ
α (20b)

(iii) ejθα±π = e−jθ
α (20c)

(v) e
j (θ+ nπ

2 )
α =

{
(−1)

n
2 ejθα , n even

(−1)
n−1

2 jejαejθα , n odd.
(20d)

The bimaginary unit can be written as j = e
j π

2
0 , so that, as an important special case of (20d):

(vi) jn =
{
(−1)

n
2 , n even

(−1)
n−1

2 j, n odd,
(20e)
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identities which again highlight the similarity between the bimaginary and the imaginary

units. Another immediate consequence of property (20d) is that e
j nπ

2
α is always a pure breal (n

even) or pure bimaginary (n odd) bicomplex quantity, which correspond to unitary matrices
of the form PD [Equation (7)]. Hence, global matrix G represents a valid separating solution
if and only if its associated bicomplex number ℵ(G) is pure breal or pure bimaginary. As

G = Q̂
H
Q, then ℵ(G) = ℵ(Q̂)∗ℵ(Q) = (ej θ̂

α̂
)∗ejθα . Now, straightforward application of

properties (20) lead to the equivalent class of valid solutions (8), thus efficiently formulated
in the bicomplex domain.

The next definition extends the argument (“arg”) function.

DEFINITION 9 (barg function). Given x̄ = |x̄|ejθα , let the bicomplex argument (barg)
function be defined as

(ψ, ϕ) = � � x̄,
{
ψ = � (Re(x̄) + j |Im(x̄)|)
ϕ = � Im(x̄),

(21)

where � (·) ∈] − π, π ] provides the angle with respect the real axis of its complex argument.
Then: ejψϕ = ejθα . In particular: (ψ, ϕ) ≡ (θ, α).

In the real-mixture case, the so-called scatter diagram allows to simplify the development
and provides an insightful geometrical interpretation of the real rotation taking place over the
source signals after pre-whitening [12, 30, 31]. If z = Q(θ)x, with Q(θ) = Q(θ, 0) and
x, z ∈ R

2, then z1 + jz2 = ejθ (x1 + jx2). Taking into account bicomplex multiplication rule
(16) and exponential expression (19), it is straightforward to prove that a similar relationship
holds in the complex-mixture case too.

PROPOSITION 10 (bicomplex scatter-diagram). If z = Q(θ, α)x then

z̄ = ejθα x̄ , (22)

with x̄ = (x1 + jx2) and z̄ = (z1 + jz2). By analogy to the real case, the bicomplex
numbers x̄ and z̄ are called bicomplex scatter-diagram points of the source and whitened
signals, respectively.

In the real case, the remaining orthogonal transformation after pre-whitening is easily
interpreted as a geometric rotation of the scatter plots. By contrast, in the complex case both
the scatter-diagram points and the associated “rotation” defined above, though algebraically
analogous to its real-mixture equivalent, become less illuminating as a geometric notion.

Many of the above new concepts will allow us to simplify the notation of the complex-
case closed-form estimators which are presented next. The beauty of bicomplex numbers is
that by constraining the breal and bimaginary parts to be real quantities, i.e., the associated
transformation to have real elements, one is at once dealing with the familiar complex numbers
and, in the context of BSS, with the real-mixture scenario.
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4. Complex Analytic Estimators

With the aid of the bicomplex-number tools developed in the previous section, [33, Theorem 1]
accepts the following extension to complex mixtures, which is proved in the Appendix.

THEOREM 11. Define ξ̄n(z) as the following bicomplex weighted sum of pairwise nth-order
cumulants of the components of z, with n ∈ N

+:

ξ̄n(z) �
n∑

r=0

(
n

r

)
j rκzn−r,r . (23)

If z = Q(θ, α)x, with x made up of independent components, then:

ξ̄n(z) = ejnθ(−1)nαξ̄n(x) , (24)

where, according to (23),

ξ̄n(x) = κxn0 + jnκx0n . (25)

By analogy with the real case, cumulant combination (23) is termed whitened-observation
nth-order bicomplex centroid. If ξn(x) is known or can be estimated, parameters (θ, α) may
be readily obtained in closed-form from (24) via:

(nθ̂, α̂) = � �
(
ξ̄n(z)

ξ̄n(x)

)
, (26)

where “� � (·)” represents the barg function defined in (21).

Solution Indeterminacy
The indeterminacy issues discussed in [33, Section 3] for the real-case estimation family also
apply to estimators (26). This indeterminacy lies in the fact that exp(jnθ) = exp(jn(θ +
2πm/n)), for any n,m ∈ N, which may lead to a non-valid separation solution. In addi-
tion, the value of ξ̄n(x) (i.e., the source marginal nth-order cumulants) is not known a priori.
Nevertheless, these two difficulties do not arise in all cases.

Fourth Order
At fourth-order, (24) becomes:

ξ̄4(z) = (κz40 − 6κz22 + κz04) + j4(κz31 − κz13) = ej4θ
α (κx40 + κx04) = ej4θ

α γ , (27)

so that the unknown parameters can be obtained via (4θ̂ , α̂) = � � (ξ̄4(z)/ξ̄4(x)). Due to the
connection with its real counterpart [30, 33], this is called the Complex EML (CEML) estima-
tor. We might as well have obtained the same result by developing the 4th-order cumulants
(12) directly. Effectively:

κz40 − 6κz22 + κz04 = cos(4θ)γ

4(κz31 − κz31) = ejα sin(4θ)γ ,
(28)
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Just like its real twin, the sks γ = ξ̄4(x) may be obtained from the available signals as in [30]:

γ = κz40 + 2κz22 + κz04 = κx40 + κx04 . (29)

We conclude this section with a final remark. In [6], the following relationship was found
for the whitened-observation 4th-order cumulants in the real case:

ρ2 − σ + 2 = 0, with


ρ � κz31−κz13

κz22

σ � κz40+κz04
κz22

. (30)

Note that relating the norms of the terms at both sides of the second equality in (27), and using
|ρ|2 instead of ρ2, one arrives at the complex equivalent of the above relationship.

5. Alternative Fourth-Order Estimator

5.1. THE COMPLEX AEML AND A COMBINED ESTIMATION STRATEGY

As in the real case, the CEML estimator derived from Equation (27) cannot be used for zero
sks, since then ξ̄4(x) = 0 (the performance degradation of this estimator around γ = 0 will
be demonstrated in the experiments of Section 6). To overcome this deficiency, we resort to
the complex version of the estimator put forward in [33, Section 5]. In the complex case, and
by virtue of relationships (12), the associated cumulant combination develops into:

ξ̄ ′
4(z) = (κz40 − κz04) + 2j (κz31 + κz13) = ej2θ

α η , (31)

where, η = κx40 − κx04 represents the source kurtosis difference (skd), whose actual sign
is unimportant for the estimation of the true parameters [due to equivalence class (8) and
property (20d)]. Then, (2θ̂ , α̂) = � � ξ̄ ′

4(z). For the sake of consistency in the nomenclature, we
name this the Complex AEML (CAEML) estimator.

The same problem as in the real case about when to use (27) or (31) naturally arises at this
point. In a bid to shed some light on this issue, experiments along the lines of those described
in [33, Section 5.2] were carried out with the complex versions. This time, 4-QAM signals
were used as sources, with independent real and imaginary parts composed of respective real-
valued PRBSs with the same symbol probability. In these conditions, the (normalized) kurtosis
of the resultant 4-QAM signal is κx4 = κx4(PRBS)/2, so that any kurtosis value equal or greater
than –1 can be obtained by suitably varying the PRBS symbol probability [28, 29]. At each
separation, the interference-to-signal ratio (ISR) [31, 33] was used as a performance index:

ISR = E
i �=j

{
|(Q̂T

Q)ij |2
|(Q̂T

Q)ii |2

}
. (32)

Signals were composed of T = 5000 samples, and the mean square value of ISR was
computed over 100 Monte Carlo (MC) runs, given in dB as ISR2(dB) = 5 log10(E[ISR2]).
The results obtained, plotted in Figure 1, are very similar to those of [33, Section 5.2]. The
alternation in best performance occurs when the skd is equal to the sks (around –1), with the
CEML offering lower ISR for |γ | > |η|, and vice versa. Since |ξ̄4(z)| = |γ | and |ξ̄ ′

4(z)| = |η|
(just like for their real counterparts [33]), this leads to the conclusion that decision rule

|ξ̄4(z)|
CEML
>
<

CAEML

|ξ̄ ′
4(z)| (33)
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Figure 1. Performance of CEML, CAEML and combCEML vs. sks. 4-QAM sources, κx40 = −1, θ = 30◦,
α = 45◦.

may as well be applied in the complex case. Although θ = 30◦ and α = 45◦ were used in
Figure 1, this conclusion is essentially identical for all angle values (θ, α). Figure 1 also shows
the results obtained under the same conditions by using the combined estimation scheme
derived from the above rule, which we thus call combined CEML (combCEML) estimator.
The performance degradation exhibited by the CEML and the CAEML around γ = 0 and
η = 0, respectively, is now corrected with the combCEML.

5.2. CONNECTIONS

In [7] another two-closed form estimators are proposed to solve the complex-mixture problem
from the pre-whitened signals. The first one (which is also featured in [9] and [13], and we
refer to as complex CF, CCF) is simply the complex extension of the real estimator developed
in [6] and analyzed in [33, Section 2]. Interestingly, the second one happens to coincide with
the complex alternative estimator suggested in the previous section.1 To choose between the
two, the decision rule

|κz22|
1st.
>
<

2nd.

|κz31 + κz13| (34)

is utilized, the rationale behind it being the conditioning of the respective parameters ρ [like
that in Equation (30)] of the estimators. For consistency in the nomenclature, we refer to the
combined estimator derived from this rule as combined CCF (combCCF).

Herein we endow estimator (31) with a novel reformulation in terms of 4th-order cumu-
lant bicomplex centroids, coherent with the unified notation used for the other closed-form
methods considered in this paper and in [33]. This allows us: (1) to easily interrelate estimator
(31) to the estimators studied in Section 4 and in [33], and (2) to obtain a practical decision
rule for the combined estimation strategy developed in Section 5.1 (combCEML), which, we

1 Note that [7, expression (13)] should actually read “arg{θk} = − arg{ρ} + kπ” when the second formula of
ρ (Equation (15) therein) is employed.
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Figure 2. Mean square ISR vs. parameter θ . 16-QAM and complex Gaussian sources, α = 65◦.

anticipate, will prove more effective than the combCCF rule (34). This last claim is put to test
in the next section.

6. Simulation Results

This section reports some numerical simulations that illustrate and give support to the preced-
ing theoretical results. We also assess and compare the relevant methods in both noiseless and
noisy environments. As in Section 5.1 in the experiments that follow, unless stated otherwise,
all signals are composed of 5000 samples and MC iterations are run over 100 independent
mixture realizations. At each MC iteration, identical signal realizations are fed into all meth-
ods considered. Performance measure ISR2(dB) (see Section 5.1) is obtained by averaging the
results over all iterations, and is the value represented at each point in the plots.

Variation with Angular Parameters
We first evaluate estimators CEML (27), CAEML (31), and CCF [7]. We are primarily con-
cerned with their behaviour as a function of angular parameters θ and α. Figure 2 plots the
results for varying θ , with 16-QAM and complex Gaussian sources. It is seen how both CCF
and CEML performance depends on θ , whereas CAEML performance is independent of θ .
Nevertheless, the performance of these methods is independent of parameter α, as illustrated
by Figure 3.

Comparison in Noiseless Environments
In the second place, the combined estimation strategies based on decision rules (33) and (34)
are assessed and compared to other methods. The other methods considered are SOK, SOK′
and JADE. Recall that the SOK is the closed-form solution given in [10] to the maximization
of a 4th-order contrast function of [19]. It was shown in [33] that such solution corresponds
to the EML when instead of the equal sign of source kurtosis the sign of source kurtosis sum
is used. In this manner, the applicability of the contrast function was expanded, since the
need for a prior knowledge of the signs of source kurtosis and for these signs to be equal is
spared. Accordingly, SOK′ corresponds to solution SOK, but using in the associated algorithm
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Figure 3. Mean square ISR vs. parameter α. 16-QAM and complex Gaussian sources, θ = 5◦.

the sign of source kurtosis sum as calculated from the whitened data by (29). On the other
hand, the well-known JADE (joint approximate diagonalization of eigenmatrices) method is
based on the optimization of another 4th-order contrast function, which can be efficiently
carried out through the diagonalization of certain set of cumulant-tensor matrix slices, so-
called eigenmatrices [4].2

In this comparison experiment, different sks are simulated by means of 4-QAM signals of
appropriate symbol probability (as commented in Section 5.1). In a bid to smoothen the result
curves, now 200 MC iterations are run at each sks point. For SOK, positive source kurtosis is
assumed. Figure 4 summarizes the results. Note, first, the close performance trends between
the JADE and the combCEML. On the other hand, decision rule (34) does not seem to be
effective, since the combCCF performance worsens as the kurtosis of the sources tend to be
similar. Results for CEML and SOK′ are exactly identical besides the region near γ = 0,
around which the former improves the latter. This suggests that the conclusion drawn in [33,
Section 4.3] regarding the relationship between the CEML and the SOK might perhaps be
extended to the complex case as well, even though the complex SOK solution makes use
of a whitened-observation 4th-order cross-cumulant which is not regarded by the CEML.
However, further experiments (Figure 5) confirm that, as was to be expected from the CEML
performance variation with θ evidenced by Figure 2, this similarity decreases for higher values
of θ ,3 although the performances of both methods remain extremely near. Figure 5 also shows
that the performance of the combCCF gets closer to that of the combCEML for higher θ .

2 The MATLAB function implementing this method was downloaded from http://www-sig.enst.fr/ ˜car-
doso/guidesepsou.html. The pre-whitening part was skipped, since only unitary mixtures were considered in these
simulations.

3 For “high θ” is understood values of θ around (2m + 1)π/4, m ∈ N, since the equivalent class of valid
solutions (8) are π

2 -periodic in θ .
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Figure 4. Mean square ISR vs. sks. 4-QAM sources, κx40 = −1, θ = 5◦, α = 65◦.

Figure 5. Mean square ISR vs. sks. 4-QAM sources, κx40 = −1, θ = 30◦, α = 65◦.

Comparison in Noisy Environments
Finally, we assess the CEML and JADE in noisy environments. Now, three sources and sensors
are employed, together with the arbitrary non-unitary mixture:

M =
 1 −1 1

2 3 4
−2 1 3

 , (35)

whose choice is motivated by having also been used in the real-case experiments of [32,
Section 4]. Pre-whitening is carried out, for both methods, via the SVD [8, 31]. In order
the extend the CEML to more than two signals, the pairwise notion originally proposed in
[8] utilized. After pre-whitening, signals are processed in a two-by-two fashion, applying
the suitable estimators to each signal pair in turn. The sweep over the q(q − 1)/2 signal
pairs is repeated around (1 + √

q) times, value which coincides with that suggested for the
method of [8]. The signal-to-noise ratio (SNR) is defined sensor-wise, as the power due to the



Closed-Form Estimators for Blind Separation of Sources – Part II: Complex Mixtures 43

Figure 6. Mean square ISR vs. SNR, for 3 uniform-phase constant-modulus sources and 3 sensors corrupted by
additive complex Gaussian noise.

Figure 7. Mean square ISR vs. SNR, for 3 sources (2 uniform-phase constant-modulus and 1 complex-Gaussian)
and 3 sensors corrupted by additive complex Gaussian noise.

sources over the power due to the noise, and chosen to be the same at all sensors. Again, we
process 5000-sample signal blocks over 100 MC runs at each SNR value, ranging from –30 dB
to 30 dB in 1-dB steps. Figure 6 shows the performance results for independent constant-
modulus (with uniformly distributed phase in [−π, π ]) sources in additive complex Gaussian
noise. As a first conclusion, the CEML extension to more than two signals works successfully.
On the other hand, remark the anomalous trend exhibited by JADE in this situation, whereas
the CEML improves as the noise power decreases (high SNR), just as it is reasonable to
expect. To obtain the results in Figure 7, one of the sources is changed to a complex Gaussian
distribution. Now the performance of JADE improves over CEML in the positive SNR range.
The reason for JADE’s pathological behaviour in the previous experiment is unclear, but it
seems to be observed when all sources have the aforementioned particular distribution. Similar
unexpected performance was reported in [32] for the method of [8] when Toeplitz-circulant
mixtures were processed under certain source and noise distribution combinations.
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7. Conclusions and Outlook

In flat-fading propagation conditions, joint MUI cancellation in CDMA communication sys-
tems develops into a problem of BSS in complex-valued instantaneous linear mixtures. In the
present work we have defined the bicomplex numbers, forming an isomorphic set to the group
of transformations relevant to the BSS problem after pre-whitening. This algebraic formalism
has permitted an elegant extension to the complex-mixture case of a number of closed-form
estimation ideas originally derived in real scenarios, including the concepts of scatter diagram
and centroid. The extended centroids appear as specific bicomplex linear combinations of the
whitened-vector cumulants which are able to retain the information contained in the unitary
mixing transformation, giving rise to compact closed-form expressions for the estimation of
the pertinent parameters. Consequently, a unified formulation of the real and the complex
problems within the framework of their analytical solutions has been devised.

Paths for the continuation of this investigation include the asymptotic performance analysis
of the complex estimators studied in this paper, which could possibly be accomplished along
the lines of the asymptotic analysis [30, 33] of their real counterparts. This analysis would
explain, for example, the dependency on θ of the CEML method, which does not occur for its
real equivalent [33]. Also, the theoretical study of the noise impact on the estimators’ perfor-
mance remains an interesting open subject. Finally, only a few properties of the new class of
numbers presented in this contribution have been utilized herein; however, it is envisaged that
the full potential of the bicomplex formalism may be employed in further research to generate
new results on BSS, or even on problems in other fields, hence opening exciting new research
directions.
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Appendix. Proof of Theorem 11

The steps of the proof are just like those in [33, Theorem 1], but now we have to take into
account the complex conjugations in the definition of the cumulants [Equation (9)]. Two cases
must be distinguished. If n is even:

κzn−r,r =
∑
i1...in

q∗
1i1
q1i2q

∗
1i3

. . .︸ ︷︷ ︸
n−r

. . . q2in−2q
∗
2in−1

q2in︸ ︷︷ ︸
r

Cumx
i1...in

, (36)
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where qij = (Q)ij . Taking into account the source independence and that q11 = q22 = cos θ ,
q21 = −q∗

12 = ejα sin θ , the above equation develops into:

κzn−r,r = (cos θ)n−r sinr θejα(r mod 2)κxn0 + (− sin θ)n−r cosr θejα((r−n)mod 2)κx0n . (37)

Since j r = jnj−(n−r) = jn(−j)n−r , expression (23) becomes:

ξ̄n(z) =
n∑

r=0

(
n

r

)
j r [(cos θ)n−r sinr θejα(r mod 2)κxn0

+ (− sin θ)n−r cosr θejα((n−r)mod 2)κx0n]

=
n∑

r=0

(
n

r

)
(cos θ)n−r (j sin θ)rejα(r mod 2) κxn0

+jn
n∑

r=0

(
n

r

)
(j sin θ)n−r cosr θejα((n−r)mod 2) κx0n.

(38)

Now, the breal part of the first summatory is(
n

0

)
cosn θ −

(
n

2

)
(cos θ)n−2 sin2 θ + · · · = cos(nθ) , (39)

whereas the bimaginary part reads[(
n

1

)
(cos θ)n−1 sin θ −

(
n

3

)
(cos θ)n−3 sin3 θ + · · ·

]
ejα = ejα sin(nθ) . (40)

The second sum produces exactly the same results. Since jn is real for n even and thus it
commutes with bicomplex quantities, then:

ξ̄n(z) = (cos(nθ) + jejα sin(nθ))(κxn0 + jnκx0n) = ejnθα (κxn0 + jnκx0n) . (41)

The first half of the theorem is then proven, since ξ̄n(x) = κxn0 + jnκx0n. For n odd, however:

κzn−r,r =
∑
i1...in

q∗
1i1
q1i2q

∗
1i3

. . .︸ ︷︷ ︸
n−r

. . . q∗
2in−2

q2in−1q
∗
2in︸ ︷︷ ︸

r

Cumx
i1...in

, (42)

which turns into

κzn−r,r = (cos θ)n−r sinr θe−jα(r mod 2)κxn0 + (− sin θ)n−r cosr θejα((n−r)mod 2)κx0n . (43)

So now the bimaginary part of the first sum becomes e−jα sin(nθ), whereas the rest of the
terms remain just as before. Hence

ξ̄n(z) = (cos(nθ)+ jejα sin(nθ))κxn0 + jn(cos(nθ) + jejα sin(nθ))κx0n
= ejnθ−α κ

x
n0 + jnejnθα κx0n .

But jejnθα = ejnθ−α j , and then ξ̄n(z) = ejnθ−α (κ
x
n0 + jnκx0n) for n odd. Therefore ∀n : ξ̄n(z) =

ejnθ(−1)nαξ̄ (x). �
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