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Abstract. The problem of multiuser interference cancellation in wireless cellular communication systems accepts
a blind source separation (BSS) model. The present contribution studies the closed-form solutions to BSS in the
real-mixture case. Connections among a number of seemingly disparate methods are unveiled, new procedures
are put forward, and their asymptotic (large-sample) performance is analyzed. Simulation experiments illustrate
and validate the theoretical results. Altogether, a unifying generic framework for closed-form BSS methods is
developed.
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1. Introduction

1.1. PROBLEM AND MOTIVATION

Traditional non-interfering (in time or frequency) multiple access schemes (TDMA, FDMA)
cannot cope with the rising demands for increased capacity, faster data rates, and higher
quality and flexibility of services in digital mobile networks. By contrast, interfering mul-
tiaccess techniques — such as code division multiple access (CDMA) — allow a trade-off
between reception quality and increased capacity (‘“‘soft capacity”), making the sharing of
channel resources inherently dynamic and considerably more efficient than with conventional
multiaccess procedures [25, 26]. Additional features such as “soft handover”, asynchronism,
and re-utilization of the entire bandwidth in every cell (reuse factor of one) have transformed
(wideband) CDMA into the strongest candidate for the third generation wireless personal
communication systems [19, 25].

The performance of CDMA systems is limited by the interference caused by active
users within the same cell (multiuser interference, MUI). Substantial capacity gains may be
achieved by appropriate suppression of MUI, especially when capitalizing on the interference
structure, giving rise to the design of multiuser detection (MUD) techniques [25, 26] in the
physical layer of the wireless system. MUD consists of the separation of the users’ transmitted
signals that appear mixed at the receiving antenna output. If an antenna array is available (as
may in the uplink), spactial diversity can be exploited; otherwise (as is more likely in the
downlink), diversity may be provided by the users’ orthogonal signature waveforms [25].

* Supported through a Post-doctoral Research Fellowship awarded by the Royal Academy of Engineering,
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In the general case, a set of stochastic processes y = [yi,..., yp]T e C? (symbol T
denotes the transpose operator) are observed at the output of a p-dimensional sensor (perhaps
virtual, if no spatial diversity is available). Each of the received signals can be considered as an
unknown mixture of the unobservable g transmitted source signals x = [x, ..., xq]T e C?
which may be assumed statistically independent. The effects of frequency-selective multipath
propagation amount to (time-varying) linear filtering of the transmitted signals, resulting in a
convolutive mixture at the receiving end. In the cases where multipath effects can be neglected
— as in flat-fading environments — the mixture becomes instantaneous, and follows the matrix
model:

y=Mx +n. (D)

Matrix M € CP*4 represents the mixing structure — determined by the transmitter-receiver
relative positions, users’ codes, propagation conditions, etc. — and vector n € C” accounts
for possible additive sensor noise. The MUD problem reduces to recovering the source data
vector x from the sensor output y.

Conventional beamforming techniques parameterize the mixing matrix M in terms of the
array structure. However, the array manifold is often unknown or difficult to model, caus-
ing calibration errors which hinder the source extraction. In this respect, operating blindly,
i.e., assuming no particular structure for M, benefits from a more robust performance [4].
Equation (1) then corresponds to the blind source separation (BSS) model in instantaneous
linear mixtures [31]. The separation is accomplished by maximizing, explicitly or otherwise,
the degree of statistical independence between the output components, a process known as
independent component analysis (ICA) [7].

Typically, no assumptions can be made about the noise, so one may concentrate on solving
the noiseless BSS problem. The conventional may be adopted that the sources are unit power,
since a scalar factor can be interchanged between each source and its corresponding column
of the mixing matrix without altering the observations. This is one of the basic BSS indetermi-
nacies. The other is related to the ordering of the sources, which is obviously irrelevant unless
some prior information is available. If the time structure of the observed signals is ignored
or cannot be exploited (as in the i.i.d. case) the source separation can only be accomplished
through the application of higher-order statistics (HOS).

1.2. OTHER APPLICATIONS OF BSS

Motivated by the vast amount of potential applications and the increasing interest in the area of
HOS, the BSS problem has received a great deal of attention during the last decade. Indeed,
there are a great number of situations in which one desires to recover unobservable signals
from measurements of their mixtures. Along with wireless communications and array signal
processing, the area of biomedical signal processing has greatly benefited from the application
of BSS techniques [13]. Problems such as the extraction of brain electric activity sources from
the electroencephalogram (EEG), as well as the removal of artifacts in EEG recordings, can
be successfully tackled by means of ICA [17]. The non-invasive extraction of fetal heartbeat
signals from maternal electrocardiogram (ECG) recordings — corrupted by the strong maternal
heartbeat components and other sources of interference — can also be neatly carried out via
BSS [16], which is shown to outperform conventional techniques [35]. More recently [20],
BSS has arisen as a novel, promising technique for the extraction of atrial activity in episodes
of atrial fibrillation, a common cardiac arrhythmia. Other interesting applications include
speech/audio processing [24] and seismic exploration [23].
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1.3. BSS PROBLEM AFTER PRE-WHITENING

Second-order processing — e.g., eigen-decomposition or principal component analysis (PCA)
of the sensor-output covariance matrix — results in a set of normalized uncorrelated signals,
z=z1,..., zq]T € C4, which are referred to as whitened signals. They are related to the true
sources through a unitary transformation [5, 10, 30, 31]:

z=0x. 2)

Therefore, the source separation reduces to the estimation of matrix Q. If @ is a correct
estimate of such matrix, then the output

s=0 'z=0"z 3)

being the conjugate-transpose operator) recovers the sources up to the scale and ordering
indeterminacies cited at the end of Section 1.1

(H

1.4. CLOSED-FORM SOLUTIONS

A great variety of different approaches have been proposed in the literature over the last
few years [4, 3, 7, 18], but our focus is on those whereby unitary matrix @ (or, rather, the
parameter(s) it depends on) is estimated in analytic or closed-form, as opposed to techniques
requiring iterative optimization (e.g., [15]) or other computationally demanding procedures.
The main attribute of closed-form solutions is their simplicity and mathematical tractability.
Essentially, closed-form methods obtain parameter estimates directly by means of a formula
composed of certain whitened-vector statistics. Specific methods differ in the statistics and
formulae used. It is shown in [5] that this direct estimation is indeed possible in the two-source
two-sensor case, and an analytic solution is found by nulling the output cross-cumulants at
order 4. This solution is extended to the complex case in [6]. The maximum-likelihood (ML)
principle together with extra assumptions on the source distribution yields another 4th-order
closed-form estimator [10]. These constraints are actually too restrictive: a similar expression
is found through a rather different approach in [30], where no such assumptions on the source
statistics are made. Comon and Moreau [9] find a closed-form solution for the maximization
of a 4th-order contrast function earlier proposed in [18]. Other analytic expressions are found
in [11, 12] from the maximization of output squared cumulant criteria. Though most of these
methods are seemingly disparate, a closer examination shows that certain relationships exist
among them.

1.5. AIM AND STRUCTURE

Our aim is to provide a generic framework for the closed-form solutions to the BSS problem.
Links between existing analytic procedures are revealed, new methods are proposed, and the
performance of the techniques considered is analyzed. Drawbacks manifested by some of
these methods are also highlighted, and are circumvented in some cases. We first address the
real-valued mixture case; the companion paper [34] extends some of the present results to the
complex-mixture case.

All solutions are identical for infinite sample size. However, their finite-sample perfor-
mances, which are obtained in practice, are potentially different. Stressing these discrepancies
is one of the key objectives of the present contribution. The statistics of practical datasets are
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implicitly corrupted by some amount of “sampling noise”, due to the finite sample length.
Accordingly, the methods’ performance in noisy environments would be expected to differ
similarly as they do in noiseless finite-sample conditions.

The paper is structured as follows. In Section 2, we relate two equivalent analytical for-
mulae suggested in [5, 8, 14] to the approximate ML (AML) solution of [10] and to the
extended ML (EML) method of [30]. The first estimator is understood in finer detail. Later,
in Section 3 a family of analytic estimators based on the nth-order cumulants is uncovered.
Interestingly, the EML estimator is a particular case of such class, for n = 4. This new general
class is considered from the perspective of optimization principles in Section 4. It is shown
that each estimator of the family is the closed-form solution to an associated contrast function.
At fourth-order, this result broadens the applicability domain of a contrast function proposed
in [18]. Section 5 puts forward another 4th-order estimator which is aimed at alleviating a
deficiency of the other 4th-order estimators considered in the prevous sections: the dependence
of their performance on certain source statistic. The idea is to combine the different expres-
sions through a decision rule, that we derive empirically. Illustrative computer experiments
are reported in Section 6. To finalize the exposition, Section 7 summarizes the conclusions.
The two appendices contain, respectively, the estimators’ asymptotic analysis and the proofs
of mathematical results established throughout the paper.

1.6. NOMENCLATURE AND NOTATIONAL CONVENTIONS

The following mathematical and statistical terms will hold in the sequel. E[-] denotes the
mathematical expectation, whereas Var[-] refers to the variance. Cumf1 i £ Cum]z; e Zig

represents the nth-order cumulant of the components of real-valued random vector z. For the

two signal scenario this notation is simplified as Cum®, , , , = k,_, ., which is Kendall’s
— —

convention for the two-dimensional case [22]. We call kurtosis of z; its 4th-order marginal cu-
mulant, Cum;,;;. Accordingly, in the two-dimensional case, k4, and k, represent the kurtosis
of components z; and z,, respectively. The skewness corresponds to the 3rd-order marginal
cumulant, x5, = Cumj,,, k5; = Cumj3,,. Symbol w; = E[x{"x7] stands for the (m + n)th-
order moment of the source signals x = (x1, x,). Totally analogous terminology holds for the
other random variables and vectors used in this paper. Symbols y and n represent, respectively,
the source kurtosis sum (sks) and source kurtosis difference (skd): y £ kfy+kiy 1 = kip—Kiy-

Sets N £ {...,—1,0,1,2,...}, Nt £ {1,2,...}, R and C contain, respectively, the
integer, positive integer, real and complex numbers. In addition, Za stands for the principal
value of the argument of a € C, and (-)* for the complex-conjugation operator. The sample
size is represented by 7.

Finally, for the sake of clarity Table 1 defines the acronyms used in this paper.

2. Connections among Direct Methods

In the two-source two-sensor scenario of real signals and mixtures, matrix @ becomes an
elementary Givens rotation of unknown angle 6:

0=0a0)), “)

where

Q) :R— R*>? Q@O = [ (35)

cosf® —sind
sin@ cos@ |’
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Table 1. List of acronyms.

Acronym Definition

ACF alternative CF

AEML alternative EML

AML approximate maximum likelihood
BSS blind source separation

CDMA code division multiple access

CF Comon’s formula

combEML combined EML

ECG electrocardiogram

EEG electroencephalogram

EML extended maximum likelihood
FDMA frequency division multiple access
HOEVD higher-order eigenvalue decomposition
HOS higher-order statistics

ICA independent component analysis
1id. independent and identically distributed
ISR interference-to-signal ratio

JADE joint approximate diagonalization of eigenmatrices
MC Monte Carlo

ML maximum likelihood

MSE mean squared error

MUD multiuser detection

MUI multiuser interference

PCA principal component analysis

pdf probability density function

PRBS pseudorandom binary sequence
skd source kurtosis difference

sks source kurtosis sum

SOK sum of output kurtosis

TDMA time division multiple access
TOBSE third-order blind signal estimator

Therefore, the separation is reduced to the estimation of a single relevant parameter, angle 6.
The characteristics of this simplified scenario are restrictive, and rather of a theoretical nature.
However, a clear understanding of the problem in this basic set-up is of primal importance,
since the solution in more elaborate practical environments (such as more than two signals,
noisy observations, etc.) may benefit from results on this fundamental case [7, 31]. For in-
stance, the general scenario composed of more than two signals can be tackled through an
iterative approach over the signal pairs [7].

Two equivalent estimation formulae which appear in [5], [8], and [14] are recalled in
Section 2.1. Section 2.2 reviews, for the sake of completeness, two other 4th-order estimators.
The connection is made in Section 2.3.
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2.1. TWO EQUIVALENT ESTIMATORS

By nulling a 4th-order cross-cumulant of the signals at the separator output, a closed-form
expression for the estimation of 6 is found in [5]. This formula reads:

tg cr = —p/2 + sign(p)y/p?/4 + 1, (6)
where
K5 — Kkt
P é 31 - 13 (7)
K2

The acronym CF stands for Comon’s formula. From Equations (2) and (4), the 4th-order
cumulants of the whitened observations can be expanded as a function of the unknown angle
6 and the 4th-order cumulants of the sources. The following are the expressions for the cross-
cumulants:

z 3 . X - 3 X

K33 = €0s” 6 sin Ok, — cos 0 sin” Ok, (8)
z 2 ) X X

K3, = €08~ 6 sin” 0 (ky, + Koy) )
z -3 X 3 . X

K1z = cos 8 sin” Ok, — cos™ 6 sin Ok, (10)

symbols «;, and kg, denoting the 4th-order marginal cumulants, or kurtosis, of the source
signals. Now, using the above expressions and expanding the trigonometric functions results
in [8, 14]:

A 2
tg(20acr) = . (11)

Resorting to the formula of the tangent of the double angle, it turns out that éCF and éACF
are simply the same estimates, even for finite sample size. On these grounds, Equation (11)
may be referred to as alternative Comon’s formula (ACF). Although these two estimators are
equivalent, the ACF will prove more useful when studying their performance (Section 2.3).

2.2. THE AML AND EML ESTIMATORS

The AML Estimator
Adopting the ML approach and using the Gram—Charlier expansion of the source probability
density function (pdf), an estimator for the unknown parameter 6 is found in [10]. When
written as a function of the 4th-order cumulants of the whitened signals it reads:

E[r*sin ¢] 4(k3, — ki3)

tg(40amL) = = . rel? = iz, j=+-L 12
g(40amL) Elricosd] — Ky — 6% + K, r z1tjz, 12)

In this development the sources are assumed to have the same symmetric distribution and
normalized kurtosis in the interval [0, 4]. The latter restriction is imposed by the validity
conditions of the Gram—Charlier expansion.
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The EML Estimator
The EML estimator is based on the expressions [28, 30]:
E = (ky — Ok, + k&) + jAcs, — k5) = (kK + ki )e™ (13)
Y = Kjo+ 2K5, + Kiy = Ko + Koy - (14)
yielding:
~ 1 .
OpmL = ZK(S -sign(y)) . (15)

Both £ and y admit a compact expression as a function of the whitened-signal scatter-plot
points, like in (12):

{ £ = E[r*e/*?]

y = E[r*] - 8. (16)

Estimator (15) generalizes (12) in the sense that it can be used for any source distribution, as
long as the source kurtosis sum y is not null. The main asymptotic results of this estimator
are summarized in Appendix A.l; a more comprehensive study is accomplished in [30]. A
straightforward adaptive version is proposed and analyzed in [33].

2.3. LINK AND DISCUSSION

Connection between AML and CF
Appropriate trigonometric transformations on (11) produce:

2g20)  4p
1 —tg2(26) p*—4
which, with the relationship among the whitened 4th-order cumulants proved in [5], reduces
to the AML estimator (12). However, for finite sample size the above mentioned cumulant
relationship does not hold. Only CF (6) and ACF (11) are identical estimates even for finite

sample size. For infinite sample length (and hence exact cumulant values) all methods provide,
obviously, the same solution: the true value of the unknown parameter.

tg(40pcr) = (17)

Connection between AML and EML

This link was established in [27, 28, 30]. We may write (12) as the argument (angle with
respect the real axis) of & in (13), whereby it becomes patent that no meaningful estimation
of 6 can be achieved if k;, + ky, = 0. The AML manifests a £45° bias when the sks is neg-
ative. The estimator was originally developed under the assumption of sources with positive
kurtosis, but it is only necessary that the sks be positive, which is a weaker assumption.

New AML Expression

AML can be made applicable to negative sks if the estimation is explicitly carried out as
a function of parameter p, as in Equation (17). This is equivalent to dividing the real and
imaginary parts of (13) by «3,, which, according to (9), has always the same sign as the sks.
That is, combining (9) and (13):

ki — 6K5, + K A(kE — K
(k0 2 04)_|_J(31Z 13):

: (0 —4) + j4p = (cos 6 sin6) *e/*. (18)
K5y k2
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CF Dependency on Unknown Parameter

According to the previous equation, the CF/ACF estimator (6)/(11) is, as the EML, valid for
any sign of sks. However, the CF performance depends on the parameter 6. Effectively, the
CF/ACEF estimator can directly be written as

1

Oack = 5 Lénce (19)

where the complex centroid &acr is given by
1 .
Eack = (k3; — Kk13) + j2K5 = 5)’ sin 20e/%. (20)

The phase shift introduced by the term y sin26 is not important: it would simply mean a
4 /2 radian bias in 6, which does not affect the source separation. From this expression, the
asymptotic variance of the CF estimator can easily be obtained (Appendix A.2), and can be
formulated as:

O’CZF = aéML + Ao?(8), 2D

where function Ao?(#) is given by the corresponding term in Equation (59), and symbols
o and o2 represent the asymptotic variances of the EML and CF estimators, respectively.
The CF performance is hence dependent on the unknown parameter 6, as opposed to the EML,
which is orthogonal invariant [30]. We have that 02 > 02\, V0, when there is a symmetric
source or both sources have identical distribution (actually it is only required that they have
equal 3rd- and 5th-order moments). Otherwise, values of 6 could exist for which oZr < oy,
and a non-symmetric performance with 6 could be manifested by the CF. For 6 close to zero
the CF quality severely degrades in all cases, and a considerably higher variance than EML’s
is expected.

3. A Closed-Form Estimation Family

In this section, the 4th-order estimator (15) is found to be a particular case of a wider family of
closed-form estimators. The following result establishes a connection between the nth-order
cumulants of the whitened observations and those of the sources whereby the parameter of
interest may be estimated at once.

THEOREM 1. Define &,(z) as the following weighted sum of pairwise nth-order cumulants
of the components of z, withn € N*:

n

au>é§:(f)j%;m- (22)

r=0
If z = Q(0)x, with x made up of independent components, then

§.(2) = ejneé‘-n (%), (23)

Tn, X

where, according to (22), §,(x) = K,y + j"Kkg,-
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The statistic &,(-) is termed nth-order complex centroid. The significance of the above
result lies in the fact that, from (23), the hidden rotation can be estimated in analytic form as:

n \&(x)

In a genuine blind problem the source statistics, and hence &, (x), are unknown. But in some
situations &, (x) can be estimated from the available data, as illustrated next. First, we observe
that formula (24) must be applied with some care.

Solution Indeterminacy
As nf = n(0 + 2wm/n), for any n, m € N, it turns out that the actual angle value supplied
by estimator (24) at order n can be any of the form 6, = 0+ 2mm /n, m € N. The only
order at which this solution indeterminacy is acceptable is, in principle, n = 4, since then the
possible bias takes the form £k /2, and this still recovers the source waveforms up to order
permutation and unitary scale factors (permitted indeterminacies, as commented in Section 1).
Accordingly, the indeterminacy is also admissible at second order, but we will see later that at
n = 2 Equation (24) is not of use any more. At order n = 3, it will also be seen below than the
indeterminacy can be resolved. At any order n > 4, there is no other option than considering
together the set of possible solutions 6, + 27k /n,k=0,1,...,n—1, and deciding by means
of an extra criterion (such as degree of output statistical independence) which of those n values
is correct.

Theorem 1 will be extended to the complex case in the companion paper [34]. Estimation
scheme (24) is now studied at different orders.

Second Order
At order 2 we have:

729 15y — kga) = 0, (25)

owing to the source unit-variance convention. So no meaningful estimation can be carried out
by (25) at this order. This was to be expected, since all second-order information is depleted
after pre-whitening. Indeed, no second-order based technique is able to recover the missing
orthogonal transformation if the temporal structure cannot be exploited (as in the i.i.d. case) or
is just ignored [31]. At orders 3 and 4, the situation is quite different. We will see that in those
cases estimator (24) can be used without the need for prior knowledge of the source statistics.

§2(2) = (i3) — kgp) + j 2k =

Third Order
In this case:
£3(2) = (K — k) + j Bis) — ky) = e (k3y — jgy) - (26)
In principle, we would need to know k3, and kg in order to estimate 6 through (26):
s 1 (&@) v ix
93=_1< > )a y3éK3O_JK03a (27)
3 V3

but then this estimator would still be suffering from the solution indeterminacy commented
above. Nevertheless, a closer look at the 3rd-order cumulants of z — bearing in mind to multi-
linearity property of cumulants and the statistical independence of the components in x [1] —
reveals that:

K5, + KT, = 1sin 206 (k) — jiiy) = v . (28)
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Hence, substituting (28) into (26): £3(2)/y; = sin229 e/2”, and so 6 may be estimated at order 3
via:

Y (-sg(/z)) | 29)
2 Y3

selecting 6; = 0 if ys = 0. This is called Third-Order Blind Signal Estimator (TOBSE).
The possible negative sign introduced by the term sin 26 of y; is irrelevant, as it would result
in a +m/2 radian bias in & which does not affect the source recovery. Also, the solution
indeterminacy is avoided, since the argument of £3(z)/y; depends on twice the true angle 6.
Naturally, this 3rd-order estimator is applicable as long as there is at least one asymmetric
source. If this condition holds, it may be wiser to employ this 3rd-order estimator rather than
a 4th-order one since, for the same number of samples, cumulant estimates are generally more
accurate at lower orders. This notion will be endorsed by the experimental results in Section 6.
Finally, remark that TOBSE statistics may also be computed from the whitened scatter-plot
points in polar form, as for the AML (12) and EML (15) methods:

£(z) = El(z1 + jz2)’] = E[re/¥] (30)
yi = Elz122(z1 + j22)] = E[%r%f@ sin 2¢9] . (1)

A simplified asymptotic analysis of this estimator can be found in Appendix A.3.

Fourth Order
At n = 4 expression (23) develops into:

£4(2) = (k4 — OK5, + K5y) + ja(K5, — ki3) = ej40(/cjfo + Kkpy) = ey | (32)

which is the EML centroid & (13). Again, we do not need to have any prior knowledge of
the source distribution (provided y # 0), since the sks may be estimated from the whitened
signals as in Equations (14) and (16). As y € R, only its sign is of interest for the estimation
of 6.

4. Optimality Principles

The family of estimators defined by Equation (24) can be seen as resulting from the op-
timization of respective cumulant matching and contrast function criteria (Section 4.1). In
particular, this will allow us to establish an interesting connection between the EML estimator
and another contrast-based method encountered in the bibliography (Sections 4.2 and 4.3).
Before unveiling such criteria, we first need the following corollary of Theorem 1.

COROLLARY 2. Define the output vector as a counter-rotation of angle 6 performed on
the whitened signal space, i.e., s = Q(—0)z. Then, with the relationships introduced in
Theorem 1:

£,(s) = e Mg, (2) . (33)
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4.1. GENERAL OPTIMIZATION CRITERIA

THEOREM 3. The family of estimators given analytically by Equation (24) are the local
minimizers of

Jon @) = 16:(5) — 6 (0)* = |6 @)e " — £,(0) 2, (34)

or, equivalently, the local maximizers of

Tun(0) = Re(€,(x)*E,(5)) = Re(&, (x)*&, (z)e ") . (35)

Minimization of (34) corresponds to an nth-order cumulant matching criterion whereby the
mismatch between a linear combination of output nth-order cumulants (&, (s)) and the same
linear combination of source cumulants (£,(x)) is minimized. Maximization of (35) yields a
contrast function optimization criterion. According to Theorem 3, the optimization of these
equivalent criteria is solved in closed-form by (24).

4.2. CONTRAST FUNCTION AT FOURTH ORDER

At fourth order, Equation (35) corresponds to the contrast function of the EML estimator.
This settles the question raised in [32] of whether an optimization criterion existed for this
estimator. In turn, this also proves that the EML estimator is orthogonal invariant [2, 3], i.e.,
its performance does not depend on the particular value of Q (property which was already
manifested when analyzing its performance in [30]). By virtue of (22), function (35) atn = 4
can be written as a function of the output cumulants:

Jeme = Jva = Re(§4(x)"84(s)) = v (kg — k3, + ky) - (36)

The significance of the following result will become apparent in the next section.

LEMMA 4. The functions Jemy in Equation (36) and
JemL = &, (K5 + &3,  withe, £ sign(y), (37)

have identical local extrema. In particular, the local maxima of JemL are given in closed-form
by (24), withn = 4.

4.3. EXTENSION OF MOREAU’S CONTRAST FUNCTION

A 4th-order contrast function is proposed in [18], which is valid when all the sources have the
same kurtosis sign, say ¢. In the two-signal case, this function reads:

Ii(s) = e(kyy+ Koy € £ sign(ky,) = sign(kyy) - (38)

A rather cumbersome analytical solution (that we call SOK, for “sum of output kurtosis”) was
given in [9] for the maximization of (38). However, if the sign of sks ¢, is substituted for the
sign of source kurtosis ¢, Lemma 4 provies that: (a) the SOK solution gracefully reduces to
the EML estimator; (b) by virtue of this simple modification I, is made applicable, under the
EML conditions, to scenarios where the sources may show dissimilar tail (kurtosis sign); and
(c) the need for the prior knowledge of the source tail is spared, since the sks can be estimated
from the available information as in (14)/(16).
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For more than two signals, the pairwise application of contrast fEML (37), i.e., of the
EML analytic solution (15), provides satisfactory results in all experiments carried out by
the authors. This is a somewhat surprising outcome, since it is not generally true that the
multidimensional extension of fEML is a valid contrast.

5. An Alternative Fourth-Order Estimator

5.1. THE ALTERNATIVE EML

Fourth-order estimators CF, AML and EML lose their consistency when the sks is zero. To
overcome this deficiency, and in the spirit of Section 3, we seek another complex linear com-
bination of the whitened-signal 4th-order cumulants that supplies an explicit expression for
the unknown parameter 6. Let us define:

E4(z) = (K5y — KkGy) +2J (165, +K5) - (39)
Then:
E4(z) = e/PE,(x), (40)

where, according to (39), £;(x) = n, since the source components are independent. Accord-
ingly, the following estimator of 6 can be used when the source kurtosis difference (skd) 7 is
not null:

S .
4= 5484(2) = Oapur - (41)

The estimation of 7 is not necessary, for it can only cause an immaterial /2 radian bias.
Observe also that £;(z) can compactly be computed as

£,(z) = El(z] + 23)((z] — 23) + j2z122)] = E[r*e/*]. (42)

Due to its analogies with the EML, this estimator is called alternative EML (AEML).
Appendix A.4 provides its main asymptotic results [27].

Given a set of whitened signals, which estimator, EML or AEML, should be used? A
sensible optimal choice would be to take the one with the smallest mean squared error (MSE).
But the MSE depends in both cses on the source statistics [27], and in a blind problem these
are unknown. We are left with adopting a suboptimal decision strategy based on the available
information.

5.2. AN EMPIRICALLY-BASED SUBOPTIMAL DECISION RULE

In a bid to obtain a tractable practical guideline to decide between the 4th-order estimators
EML and AEML, their performance is evaluated for different values of sks y and skd 5. This
can be achieved by using pseudorandom binary sequences (PRBS) as sources [29]. Resorting
to these ideas, «y, is fixed at —2, whereas the kurtosis of the second source (ky,) is varied
between —2 and 14. Signal realization are composed of 7 = 5 - 10* samples. At each kurtosis
value separations are performed by the two methods on the same orthogonal mixtures of
6 = 30°, and a performance index is averaged over 100 independent Monte Carlo (MC) runs.
The performance index must be selected with care. For instance, the estimated-angle MSE is
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Figure 1. Performance of EML, AEML and combined estimators vs. sks and skd. PRBS sources,

Ky = —2.6 = 30°.

not an effective measure, because several angle values provide equivalent separation solutions
(all angles of the form 6 + mm /2, m € N). Instead, we compute the interference-to-signal
ratio (ISR) [31], which quantifies the average interference caused by the unwanted sources in
the recovery of the desired sources. In our set-up, it is defined as:

0 0. .12
ISR= E I(QTQ)UI
FNQ @il

where notation (A);; represents the element (i, j) of matrix A (after rearranging its columns

(43)

to place the dominant entries in its diagonal). Since ¥ = s = QT Ox = QO — é)x and
the true sources are assumed unit-variance, the ISR becomes a good approximation of the
estimated-angle variance when 0~ 0+mn /2, m € N, i.e., at valid separation solutions.

Figure 1 shows the results.! As expected, EML and AEML worsen around y = 0 and
n = 0, respectively. Taking into account that

184()| = [Kkzg + Kyl = 1V
1&4(2)| = Ik + Kg4l = [0l
the performance of both methods deteriorates when their respective centroids are close to the
origin of the complex plane. For y < —2, the EML shows better performance than the AEML,
and conversely when y > —2. So an alternation in best performance occurs when the signs

of source kurtosis pass from being equal (EML is better) to being different (AEML is better).
These results lead to the following decision rule between the two methods:

(44)

EML
Kbk =0 (45)
4004 < .

AEML

I For a clearer comparison, the mean square value of ISR has been plotted in dB, where ISR%(dB) =
510g10(E[ISR2]). The justification for “5” lies in the fact that ISR is already a quadratic quantity [Equation (43)].
Therefore, when using this measure both location (bias) and dispersion (variance) information about ISR are
condensed in the results.
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Straightforward algebraic manipulations transform the above expression into:

EML

2 (ko — k)’ (46)

AEML

2
(k30 + Ko4)

Bearing in mind Equations (44), this is turned into a practical decision rule, i.e., a principle
that can be applied from the available information, which reads:

EML

@ 2 1&5@)]. (47)

AEML

Thus, if the modulus of the EML centroid (13) is bigger than the modulus of the AEML
centroid (39), then the former should be applied, and conversely. Intuitively, this empirical
rule of thumb makes sense: choose the estimator with the largest centroid modulus. The hybrid
estimation scheme derived from (47) is referred to as combined EML (combEML). As shown
in Figure 1, the combEML consistently maintains the best performance over all range of sks
and skd. Additional experiments on continuous distributions corroborate decision rule (47)
[27].

6. Simulation Results

A number of simulations endorse and illustrate the theoretical exposition of the previous
sections. In what follows all signals are composed by 5000 samples, and MC iterations are run
over 100 independent mixture realizations. For a given simulation, identical signal realizations
are fed into all methods considered. Performance measure ISR (see Section 5.2) is averaged
over all these iterations, and is the value represented at each point in the plots.

The first experiment demonstrates the dependence of CF estimator on parameter 8. Figure 2
shows the results obtained with the CF (6), the AML (12) and the EML (15) for orthogonal
rotations of different angles on source signals with an exponential and a uniform distribution.
As seen in Section 2.3, the CF estimator performance varies with 6, whereas the other two do
not. Note also that, since the sks is positive, AML provides identical performance as EML,
even though the experimental set-up contradicts the original assumptions of [10] (different
source distributions, an asymmetric source with kurtosis outside validity of Gram—Charlier
expansion). This is in accordance with the exposition in Section 2.3, [28] and [30].

Testing the accuracy of the asymptotic results is the main objective of the second simu-
lation. Figure 3 shows the performance variation of the EML (15), CF (6) and TOBSE (29)
estimators, together with their respective expected asymptotic variances, Equations (56), (59)
and (61), as a function of the unknown angular parameter 6. The source pdfs chosen are ex-
ponential (long-tailed, asymmetric) and asymmetric triangular (short-tailed). CF performance
follows very accurately the theoretically anticipated asymmetric trend, with a severe deterio-
ration around 8 = mm /2 rad, m € N (Section 2.3). The EML, which shows a flat response
with 6, improves the CF across the whole angle range besides very small regions around —30°
and 60°. TOBSE also exhibits an asymmetric variation with 6 for these source distributions. A
performance degradation similar to that of the CF is also observed near the “critical” regions
6 = mm/2rad, m € N. As a result, the fitness of its analytic variance is precise only outside
the cited areas. Further investigations are required to overcome these unforeseen practical
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limitations, which are probably introduced by the term y; [Equation (28)] in the estimator
expression. However, TOBSE improves, by up to 10 dB, the 4th-order methods over most
angle range.

The third experiment compares several closed-form solutions studied in this paper, and is
run along the lines of the simulation described in Section 5.2. Now the combined estimator
(15) and (41) together with decision rule (47) is tested along the EML, AML and CF, setting
6 = 10°. Figure 4 shows that the EML consistently provides better performance than the
CF and the AML. The latter is biased for negative sks. The use of the combined strategy
avoids the performance worsening around zero sks and improves it for positive sks. TOBSE
is also considered. As the sks varies between —4 and 12, the skewness of one of the sources
varies between 0 and —4 [29]. TOBSE performance appears nearly independent of the source
skewness values, and improves the 4th-order estimators EML, AML, and CF over most values
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Figure 4. Mean square ISR vs. sks and source skewness. PRBS sources, Kjfo =-2,0 = 10°.

of sks/source skewness. As pointed out in Section 3, the higher estimation accuracy of 3rd-
order cumulants relative to 4th-order ones may account for this outcome.

The purpose of the final experiment is to contrast the EML with SOK, to illustrate the
results of Section 4.3, and to make a comparison to other well-established BSS methods.
ICA-HOEVD (higher-order eigenvalue decomposition) [7] and JADE (joint approximate
diagonalization of eigenmatrices) [4]. The ICA-HOEVD is based on contrast function opti-
mization, specifically, on maximizing the sum of output squared kurtosis, whereas JADE relies
on the joint diagonalization of particular cumulant-tensor matrix slices. The method labelled
as SOK’ corresponds to the direct solution SOK, but using the sign of sks ¢, as estimated
by (14) instead of the kurtosis sign of both sources. Here, for the SOK the source kurtosis
is assumed to be always positive, &¢ = 1. Results of Figure 5 confirm that, effectively, SOK’
solutions coincide with the EML estimates. In fact, even SOK coincides with EML when the
sks is positive, although the sources themselves have different kurtosis sign. Hence, the use of
contrast (38) can indeed be extended as commented in Section 4.2. It is interesting to observe
how the combEML outperforms ICA-HOEVD and JADE by about 4 dB in this simulation.
Also remark the identical trend exhibited by their respective curves, and the deterministic per-
formance [3, Section VII-C] of these three methods for equiprobable-symbol PRBS sources
(y = —4). Effectively, o2, = 0 for symmetric binary sources. In contrast, observe that the
AEML can never enjoy deterministic performance.

7. Summary, Conclusions and Outlook

MUD in multiuser wireless communications can be formulated as a BSS problem. This con-
tribution has addressed a number of issues related to closed-form estimators for the blind
separation of instantaneous linear mixtures. In the first place, the connections among CF, AML
and EML have been established. The AML could not be used for negative sks but, thanks to
the link evidenced, an equivalent expression for this estimator has been found overcoming this
deficiency. The CF performance has been shown to depend on the unknown angular parameter.
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Figure 5. Mean square ISR vs. sks. PRBS sources, Kjfo =-2,0 =10°.

Therefore, the EML estimator emerges as the best option among those three methods: it is
valid for any sign of sks and its performance is independent of the unknown parameter.

In the second place, a general family of estimators based on the higher-order statistics has
been determined. It is based on specific complex liner combinations of the whitened-signal
cumulants which preserve explicit expressions for the unknown parameter. At 4th-order, this
general class yields the EML method. Also, a new 3rd-order estimator, so-called TOBSE, has
been derived from the family. It can be applied when at least one of the sources is asym-
metric, and in most of the experiments it has offered better performance than its 4th-order
counterparts; this outcome may be due to the lower estimation error of 3rd-order cumulants.

Contrast-function/cumulant-matching optimization criteria have been associated with the
closed-form estimation family. This result has proven specially fruitful in the fourth-order
case, for the applicability of a known contrast function has been expanded and the EML has
been found to be its analytical solution.

The EML performance deterioration for near-zero sks has been solved by putting forward
another 4th-order estimator, the AEML. A heuristic decision rule has been derived to select
between the two expressions given a batch of whitened observations. The resultant combined
estimation strategy exhibits a performance variation with the source 4th-order statistics similar
to well-established contrast-based BSS methods such as JADE and ICA-HOEVD.

Several matters deserve further investigation. As a first point, some type of phase un-
wrapping strategy could be developed in order to surmount the indeterminacy problem of
estimation family (24), thereby allowing direct estimation at any order greater than four.
Whether this strategy would actually be beneficial should also be a subject of careful con-
sideration, since the estimation errors at high orders could render any effort in that direction
useless. An approach to the multi-signal case different from the iterative pairwise technique
[7] could be devised by looking into combinations of cumulants involving more than two
components. How the noise influences the estimation performance needs to be looked into as
well.

This paper has provided the first unified vision of analytic estimators for BSS. Hence, it is
hoped by the authors that this work will open fresh new avenues of research on the topic.
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Appendix A. Asymptotic Performance Analysis

This appendix summarizes the large-sample performance results of the estimators studied in
this paper. The general result is as follows. Let an angle estimate 8 be obtained from a sample
estimate of a whitened-observation complex centroid £ via

b= —/E. (48)

N | =

Also, assume that & accepts the formulation

£ = A’ with AE = |AE|e’? (49)
denoting the sample estimate of the associated source centroid. Then, the error of estimate 6
is

AOE@O—0)=35/r. (50)

Now, given the complex variable

. 1 <
A§E =w) + jo, = T Z(cbl(k) + jan(k)), (51)

k=1
such that (k) and @, (k) are functions of the i.i.d. random vector x (k), and
m = Elw(] = E[@1], E[w;] = E[@n] =0,
2 1 - (52)
0, = Var[w;] = ?Var[a)z]

then the asymptotic (as 7 — 0o) pdf of § = ZAE is proven to be [27]:

1 —82
8) ~ ps) = . 53
ps©) ~ ps(d) T exp { 2(02/m)2} (53)
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Therefore, from this last result and Equation (50), the estimation error is asymptotically
distributed as

~ d
A6 — N(0, 05 /(rm)?), (54)

T—o0

. . d . .. e . . . .
in which — indicates convergence in distribution [21]. Alternatively, identical asymptotic
results are obtained from the small-error analysis of the associated contrast function [27].

A.1. EML ESTIMATOR

For the EML estimator (15) we have [30]:

.1 <&
Af = — ;uxk) + jxa(k))?

(55)
m=y
o3 = 16(ugy + 1gs — 230k / T
providing the asymptotic variance:
Mgo + Mos — 2153010
J]%ML =% ()]6:)/2 00 (56)

The EML is asymptotically unbiased (unbiased for any sample size if one of the sources is
symmetric) and strongly consistent as long as y # 0 [30].

A.2. CF ESTIMATOR

In the case of the CF/ACF estimator (19), one obtains:

. - . .
AE = T le{(xl(m + jxa(k))*e’? — [(x] (k) + x5 (k))* — 8]le /%)

1
m = Ey sin 20 (57)
07 = [d(uiomny — 1) cos? 20 + (U + pig — 2135 15,) sin® 20 (58)
+ 45 ps — Maghtys) €os 20 sin 201/ T .
These parameters yield the large-sample variance:
4 (WhoMos — D v ox v ox
odr = oy + Ty2tg20 { 40tg(;9 + (50103 — M30M0s) [ - (59)

The CF is asymptotically unbiased and strongly consistent provided m # 0, that is, as long
as both the sks y and angle 6 are not null. The dependency of o4 on 6 only vanishes for
two symmetric binary sources, in which case the CF, like the EML, presents deterministic
performance (o = 0).
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A.3. TOBSE ESTIMATOR

Due to the term y; in expression (29), the study of TOBSE asymptotic performance is more
complicated than for the 4th-order methods. An approximate analysis can be carried out by
considering non-blind estimator (27) instead, providing an optimistic or “best-case” bound of
performance.

Estimator (27) can alternatively be written as 6y = %Zéé, with éé = §3 ¥5 . This results in:

AE

« T
Y .
7@ + jra®)’
k=1
m = |ys|* (60)
022 = [(Kfo)z(ﬂgﬁ + 9y — O1gy) + (K33)2(Mg0 + gy — 614Y)
—20(c3kg)2)/ T
and an asymptotic variance:

2
0,

2
lof N (61)
TOBSE 9|y3|4
A.4. AEML ESTIMATOR
For the AEML estimator (41):

R )
Aé=— ;(x%(io +x3()) (xr (k) + jxa(k))? .

022 = 4o + Moo T 210100/ T

resulting in

2 Moo + Hoe + 21004
OAEML — T . (63)

Provided the skd 7 is finite, the estimator is asymptotically unbiased and strongly consistent.

Appendix B. Proofs

B.1. PROOF OF THEOREM 1

Due to the multilinearity property of cumulants and the statistical independence of the
components in x [1], we can write:

z J— e . . .. . X J— n—r _r X n—r _r X
Ky_pr = E Qiy " Qlin, iy gy G20, CUMG = GY Ga1K0 41y G0k, (64)

i i
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where g;; = (Q);; are the entries of the orthogonal transformation. Substituting this
expression into (22) and noting that g1 = g2 = c0s 0, g21 = —¢q12 = sin6), we obtain:

&,(z) = Z (Z ) J"[(cos 8)" " (sin6)"«;, + (—sin€)" " (cos 0) 'k}, 1 =
r=0 (65)

= K> (rrl ) (cos )"~ (jsin®) + "k, Y (’: ) (j sin6)" " (cos 0,
r=0 r=0

where, to go from the second to the third term, we have made use of the relations j© =
jrjTem = jn(=hYrr = j"(—j)"~". Now, in order to simplify the summatories, we resort
to Newton’s binomial expansion:

n n

> (': ) (cos )" (jsinf)" " = (’Z ) (cos0)" " (j sinf)" =

r=0 s (66)
= (cos@ + jsinf)" = e/,
So, finally:
gn (Z) = 61”9 (KnO + JnK())Cn) = ej"GSn (x) . (67)

The last equality is due to the source independence, which makes all source cross-cumulants
vanish.

B.2. PROOF OF COROLLARY 2

s = @Q(— 9)z = Q(— Q)Q(Q)x = Q0 — Q)x s0, by successive application of Theorem 1:
£,(s) = e"0Dg, (x) = e (e, (x)) = e g, (2).

B.3. PROOF OF THEOREM 3

Since Jm,(0) = (e — £ (x)(E (e — £,(x)* = 6@ + 16X -
2Re(&, (x)*E,(2)e /") = 2|&,(x)|> — 2Jmn (6), and |€,(x)|? is constant for a given pair of
sources, the minimization of Jp,, is tantamount to the maximization of Jy;,. Thus, we only
need to show the second part of the theorem.

The first and second derivatives of Jyy, are, respectively:

9 Ivn .
= = nlm(, (x)"E (2)e ")
a0
2 ) (68)
= = —n’Re(§,(x)"&,(2)e ") = —n’Jy, .
96?2
The local extrema of Jyy, are hence given by the first-order necessary condition:
aJMﬂ — 0o /LE® E@)-n _ 41 (69)

The local maxima must fulfil, in addition, the second-order necessary condition % < 0,
which occurs if and only if e/[£E® @)=l — | Hence Bopt = L& (x)*E,
m € N, which transforms into én with &, (x) ™' = £,(x)*/|€,(x)|*.

2mm
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B.4. PROOF OF LEMMA 4

Due to the relationship between the outputs and the whitened signals, s = Q(—0)z, it turns out
that % = sy and % = —s1. By using these equations when differentiating the cumulants, we

arrive at Jyy = 16y (i3, —kcy). Similarly: Jiy, = 4e, (k3 —«{3). Hence: Joyy = 41y | M-
Both functions are proportional from the first derivative onwards, and thus have identical
critical points.
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